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ABSTRACT

Software stability and reliability are the core concerns of DevOps.
They are improved by tightening the collaboration between de-
velopers and operators in cross-functional teams on the one hand
and by automating operations through continuous integration (CI)
and infrastructure as code (IaC) on the other hand. Ideally, teams
in DevOps are fully independent. Still, their applications often de-
pend on each other in practice, requiring them to coordinate their
deployment through centralization or manual coordination.

With this work, we propose and implement the novel IaC so-
lutionµs ([mju:z] łmusež ), which automates deployment coordi-
nation in a decentralized fashion.µs is the first approach that is
compatible with the DevOps goals as it enables truly independent
operations of the DevOps teams. We define our research problem
through a questionnaire survey with IT professionals and evalu-
ate the solution by comparing it to other modern IaC approaches,
assessing its performance, and applying it to existing IaC programs.
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1 INTRODUCTION

The goal of agile developmentÐimproving satisfaction through it-
erative feedback and higher velocityÐhas led to DevOps, aiming to
reduce the friction between software development and operations.
It unites developers, operators, and others in cross-functional teams,
improving the collaboration between the professions to increase re-
liability and stability [20]. These goals are expressed in the software
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delivery and operational (SDO) performance of the organization,
which is measured by Forsgren et al. [8] by the (1) deployment
frequency, (2) lead time between development and production of
changes, (3) required time to restore service on failure, and (4) the
rate of failed changes.

Technically, DevOps drives operations automation through con-

tinuous integration (CI) and infrastructure as code (IaC) [19]. The
latter leverages code-based techniques for operations, enabling the
application of well-developed best practices from software devel-
opment like versioning, testing, or reviewing. Earlier examples of
IaC approaches are Chef [7] and Ansible [3], which allow server
configuration through procedural scripts, and Puppet [26] that is
declarative, i.e., its scripts describe a target state and the system
automatically derives the operations to achieve it, providing bet-
ter stability and less maintenance [29]. Meanwhile, these systems
are often referred to as configuration as code (CaC) because they
cannot provision infrastructure, which is required to use modern
cloud infrastructure effectively, e.g., serverless functions, contain-
ers, databases, and storage. This demand led to declarative IaC
solutions like Terraform [11], AWS CloudFormation [34], or Azure
Resource Manager (ARM) [18], which use JSON, YAML, or other
DSLs for their configuration. Lately, IaC solutions like Pulumi [24]
and AWS CDK [33] became available, using general-purpose pro-
gramming languages like TypeScript, Python, C#, or Go to describe
the infrastructure. They allow developers to use already known
languages with all their well-developed abstractions and tools.

Ideally, DevOps teams are independent. However, their applica-
tions often depend on each other in practice, requiring coordinating
the times and order of deployments and changes. With today’s IaC
solutions, this coordination requires either (1) centralization, which
is against the independence of teams, or (2) manual coordination,
e.g., via phone, email, or chat, which contradicts DevOps’ automa-
tion paradigm and requires synchronization between the teams,
reducing the flexibility, reliability, and stability. In this work, we
address deployment coordination for DevOps organizations with
cross-functional teams to automate the deployment coordination
in a decentralized fashion. Such decentralized automation enables
DevOps organizations to be compatible with DevOps goals in the
presence of inevitable application dependencies across teams, im-
proving their SDO performance.

To identify the research problem in practice, we perform a ques-
tionnaire survey under IT professionals, assessing the existence of
dependencies between their applications and whether these depen-
dencies impact the order of application deployments and undeploy-
ments. To automate the coordination of decentralized deployments,
we propose µs ([mju:z] łmusež ), a novel IaC system that treats
deployments as continuously running processesÐin contrast to the
common perception that deployments are one-off tasks. We con-
nect such deployments and implement a protocol for the controlled

1630

https://orcid.org/0000-0003-2911-8304
https://doi.org/10.1145/3468264.3473101
https://doi.org/10.1145/3468264.3473101


ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece Daniel Sokolowski

sharing and reactive updating of resources, achieving automated
coordination across separate deployments and, thus, across inde-
pendent teams. We plan to compareµs with other IaC solutions
and apply it to existing IaC script.

In the following, we present related work (ğ2) and our IaC solu-
tion for cross-functional DevOps teams in ğ3. Then we describe our
evaluation plan (ğ4) before reporting the already achieved results in
ğ5 and providing evidence for our contribution to knowledge (ğ6).

2 RELATED WORK

Resource Orchestrators. Weerasiri et al. [42] provide an overview
on resource orchestration for the cloud. Following their reference
architecture,µs is a rule engine (it performs rule-based operations
for decisions) and a policy enforcement engine (it takes decisions
based on policies and external signals). Ranjan et al. [31] summa-
rize the programming of resource orchestration operations. Various
centralized orchestration solutions for virtualized containers ex-
ist, e.g., Kubernetes, Kubernetes Federation, Mesos, and Docker
Swarm [6]. DOCMA [12] is an orchestrator for IoT applications
that is distributed and decentralized. However, the applications
globally define all resources in their scope requiring a centralized
view of the system. COPE [16] is a distributed policy enforcement
engine for cloud orchestrators, enforcing orchestration policies
expressing constraints and service-level agreements (SLAs).

Resource orchestrators create, update and delete resources, which
is also required in our IaC approach.µs uses resource orchestra-
tors internally for these tasks. However, the focus of this work is
on coordinating dependency fulfillment in a decentralized way. In
contrast, resource orchestrators rely on centralized mechanisms to
fulfill dependencies if they handle them at all.

Infrastructure as Code. Infrastructure as code [19] uses machine-
readable code to configure and provision, i.e., deploy, systems. It
enables applying best practices from software engineering to soft-
ware operations, e.g., version control, static analysis, or code re-
views. Various industrial IaC solutions are available (cf. ğ1) and
Rahman et al. [27] performed amapping study on their discussion in
academia. A Terraform based approach for repeatable auto-scaling
infrastructure in scientific computing is proposed by Balis et al. [4].
Guerriero et al. [10] performed semi-structured interviews with 44
developers, noticing that maintenance and evolution of IaC require
better support and tooling.

Code quality has been studied for CaC systems. Sharma et al.
[35] analyzed ~ 5 K Puppet projects, identified common code smells,
and showed that configuration and design smells often go along.
Schwarz et al. [32] generalized these findings because such smells
are independent of the used technology. Rahman and Williams [30]
conducted an empirical study on defective CaC scripts, identifying
source code properties that correlate with defects. They also identify
code smells through qualitative studies of Ansible, Chef, and Puppet
scripts and propose corresponding static linters [28, 29].
µs is a representative of the youngest generation of IaC solutions:

It is declarative and leverages a general-purpose programming lan-
guage.µs supports various cloud providers and is based on Pulumi.
In contrast to all other IaC solutions, µs enables decentralized
deployments with automated coordination.

Modeling Languages. Modeling languages specify architectures
and behavior. E.g., the OASIS standard TOSCA [21] models cloud ap-
plications and their management. It describes topologies as a graph
of components with their relationships. Operational behavior is
described in management plans using existing workflow modeling
languages, e.g., BPEL or BPMN. Bellendorf and Mann [5] give an
overview of TOSCA cloud orchestration techniques, extensions,
and tools. TOSCA was also applied to DevOps to integrate hetero-
geneous automation artifacts [43, 44].

Wurster et al. [46] describe the Essential Deployment Metamodel

(EDMM), a least denominator metamodel of IaC solutions. TOSCA
Light [47] is the EDMM-compatible TOSCA subset that was shown
to be deployable with 13 IaC solutions using TOSCA Lightning [45].

Declarative IaC solutions and modeling languages describe sys-
tem architectures. However, modeling languages also describe op-
erational behavior, which is automatically derived in declarative
IaC. The resource graph model ofµs is inspired and compatible
with the EDMM. Therefore, system descriptions in modeling lan-
guages like TOSCA could be automatically converted toµs , which
then provides the operationalization and runtime to execute these
specifications in DevOps settings out-of-the-box. This also enables
to use (graphical) modeling tools, e.g., from the TOSCA ecosystem,
as description languages forµs .

Architecture Description Languages. Architecture Description
Languages (ADLs) define the component-level structure of an ap-
plication. Medvidovic and Taylor [17] define that ADLs specify
components, connections between them and their configuration,
and they provide tools for development and evolution. ADLs exist
on various levels, e.g., ArchJava [2] defines components in Java
and ORS [15] treats entire services as components. Terra and Va-
lente [38, 39] propose a DSL to enforce constraints on structural
dependencies in object-oriented software.

ADLs can be used to verify that an application’s architecture
complies with its specification. Descriptive IaC solutions are sim-
ilar to ADLs, because they define the system’s architecture as re-
sources (components) and their dependencies (connections). How-
ever, ADLs do not provide an executable specification, constructing
the system from the specification, which is required for deploy-
ments. Moreover, they do not cover mechanisms to coordinate
decentralized deployments.

3 AUTOMATING DECENTRALIZED
DEPLOYMENT COORDINATION

In descriptive IaC systems, users define a directed acyclic graph
(DAG) where each node is a resource, e.g., a database, container,
or network ACL entry, and arcs are dependencies between them,
typically due to a contained-in or requires relationship [46] between
the two resources. These dependencies are transitive and order the
deployment, i.e., if resource 𝑅 depends on 𝑆 , 𝑆 must be deployed
before 𝑅, and 𝑅 must not be deployed when 𝑆 is undeployed.

We use a simple static website with a single index.html page
hosted in an AWS S3 bucket as a running example. The deployment
description is in Listing 1 and defines Figure 1a; the index must
be deployed after and undeployed before the bucket. While this is
unrealistically simple, it suffices to showcase our approach.
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Listing 1: Centralized deployment description of the website.

1.1 const bucket = new aws.s3.Bucket('website', {

1.2 website: { indexDocument: 'index.html' }

1.3 }); // Creates the S3 bucket for the static website
1.4 const index = new aws.s3.BucketObject('index', {

1.5 bucket, content, key: 'index.html'

1.6 }); // Saves the index.html page in the website's bucket

Bucket 
website

BucketObject 
index

(a) Centralized.

EditorProvider

Bucket 
website

BucketObject 
index

RemoteConnection 
editor

RemoteConnection 
provider

Offer 
bucket

Wish 
bucket

(b) Decentralized usingµsoffers and wishes.

Figure 1: Resource graph of the website deployment.

3.1 Decentralized Deployment

In DevOps, ideally, each team operates its resources independently,
including deployment. In the website example, the provider could
be responsible for the bucket and the editor for the page in it. To
ensure that the index page is only deployed when the bucket is,
both teams need to manually coordinate whenever the bucket is
deployed, updated or undeployed. This decreases the flexibility of
the teams and wastes time due to synchronization. To decouple the
deployment times, we propose to treat deployments not as one-off
tasksÐas all common IaC systems doÐbut as continuously running
processes, updating the deployed resources reactively based on the
deployment description and external signals, e.g., changes in other
deployments. The editor can start their deployment independently
and run it continuously. Whenever the provider starts or updates
their deployment, the editor’s deployment automatically deploys,
updates, or undeploys the index page, without manual intervention.

To enable such behavior, the connections between deployments
and inter-deployment resource dependencies must be explicit. For
this we propose three new resource types: RemoteConnection for
connections to other deployments, Offer to provide resources or
information to a connected deployment, and Wish to access the offer
of a connected deployment. Using them, the provider and editor
specify their connection (Lines 2.1 and 3.1). The provider offers their
bucket (Lines 2.2 to 2.4) to the editor’s deployment in Line 2.5. The
editor specifies their expectation of the offer by defining a wish in
Line 3.2, allowing to use the offered bucket via wish.offer (Line 3.4).
Together Listings 2 and 3 define the resource graph Figure 1b.

3.2 Enabled Use Cases

Asynchronous deployment across teams. µs enables teams to
start their deployments independently and deploys resources asyn-
chronously once their dependencies are fulfilled. E.g., the editor
starts their deployment before the provider. First, the index is not
deployed because its dependency is unsatisfied. Once the provider
deploys the bucket,µs automatically deploys the index.

Listing 2:µsdeployment description of the provider.

2.1 const editor = new RemoteConnection('editor');

2.2 const bucket = new aws.s3.Bucket('website', {

2.3 website: { indexDocument: 'index.html' }

2.4 });

2.5 new Offer(editor, 'bucket', bucket);

Listing 3:µsdeployment description of the editor.

3.1 const provider = new RemoteConnection('provider');

3.2 const wish = new Wish<aws.s3.Bucket>(provider,'bucket');

3.3 const index = new aws.s3.BucketObject('index', {

3.4 bucket: wish.offer, content, key: 'index.html'

3.5 });

Safe undeployment across teams. µs ensures that all resources
depending on a resource 𝑅 are not deployed anymore when 𝑅 is
undeployed. If 𝑅 shall be undeployed, the undeployment of all
resources depending on it is triggered and 𝑅 is only undeployed
after their undeployment is completed. E.g., when the provider
undeploys the bucket,µs automatically undeploys the index before.

Reactive updates across teams. µs automatically transports con-
figuration changes across the teams’ deployments and triggers
reactive updates. E.g., the editor might show the bucket’s name
(wish.offer.name) in the page’s content. If the provider updates the
bucket name, this change is transported to the editor’s deployment,
automatically updating the index page’s content.

3.3 System Architecture and Design

The runtime of a µs deployment comprises three components:
(1) The interpreter generates the target state from the deployment
description and a snapshot of the current values of all external
signals, e.g., remote offers. The target state is a snapshot of the
resource graph described by the deployment description where all
resources depending on unsatisfied wishes are pruned, e.g., if the
bucket offer is not available, the index page is absent in the target
state of the editor’s deployment. (2) The driver reads the current
deployment state from persistent storage, deploys, updates, and
undeploys resources to achieve the target state, and persists the
new deployment state for its next invocation. (3) The reactive engine
is the only continuously executing component and records changes
of external signals, e.g., when a remote offer changes. It triggers
the interpreter on changes, which subsequently runs the driver.

To ensure correct behavior, the interpreter and driver may not
execute multiple times in parallel. Thus, the reactive engine buffers
all changes between invocation of the interpreter and completion
of the driver. If during this period a change was observed, the
interpreter is directly invoked again. Otherwise the invocation is
delayed until the next external change is observed.

Each team can exchange its deployment description, allowing
the update of the deployment. Such updates take effect on the
next run of the interpreter and driver. Also, the resources deployed
by a deployment continue to exist when the deployment stops or
crashes. Thus, the deployed applications continue operating when
their deployment goes down. However, they will not be updated
until the deployment starts again. Across teams, the unavailability
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of another deployment delays the deployment of its resources. Also,
unavailability delays the undeployment of a resource on which
resources of the unavailable deployment (transitively) depend.

4 EVALUATION

We evaluate the existence of the research problem andµs’ effec-
tiveness, performance, and applicability to existing IaC scripts.

To identify the demand for decentralized automated deployment
coordination, we perform an empirical study with IT profession-
als that follows the ACM SIGSOFT guidelines for questionnaire
surveys [1] and advice from Kasunic [13] and Kitchenham and
Pfleeger [14]. We want to find out: (1) How many dependencies
do applications have to other applications? (2) Do such depen-
dencies constrain their order of deployment and undeployment?
(3) How are deployments coordinated in practice? (4) Do practi-
tioners believe that automated coordination provides better SDO
performance than manual coordination? (5) Does the organization’s
SDO performance influence the answers to the previous questions?
For the SDO performance-related questions, validated instruments
from Forsgren et al. [8] are reused.

To evaluate the effectiveness ofµs , we re-implement the deploy-
ment of existing applications and compare them with deployments
in systems like Pulumi or AWS CDK. The amount of coordination
overhead reduction shall be evaluated, and code-based metrics indi-
cating the complexity shall be compared, e.g., lines of code, resource
objects, etc. To evaluateµs’ performance, we implement a set of
microbenchmarks inµs and other systems like Pulumi and AWS
CDK, covering simple, typical deployments. Pulumi’s examples
repository [23] is the starting point. With this benchmark suite, we
compare the deployment duration, obtain insight intoµs ’ behavior,
measure the delay to adapt to changes reactively, and assess the re-
source consumption. To assess the adaptability, we migrate existing
IaC programs toµs . We start with Pulumi TypeScript programs
using stack references [25], Pulumi’s feature to explicitly model de-
pendencies across deployments. These scripts are compatible with
µs out-of-the-box; however, to leverage automated coordination,
the stack references need to be converted to offers and wishes. To
evaluate the migration from other IaC solutions, focusing on their
features explicitly modeling dependencies across deployments, we
use import and conversion tools from the Pulumi community [22]
to obtain aµs compatible version. Then we enableµs’ automated
deployment coordination by applying transformations based on
information from the original programs.

5 ACHIEVED RESULTS

We organized the Dependencies in DevOps Survey 2021 from Janu-
ary to April 2021. It was filled by 134 IT professionals working in
industry, who were advertised through snowball sampling [9] on
a DevOps mailing list, social media, and in the authors’ personal
networks. The central insights are that (1) the majority of applica-
tions depend on others, (2) such dependencies usually impact the
deployment and undeployment order, and (3) deployments across
teams typically rely on manual coordination, even though (4) auto-
mated coordination promises better SDO performance. The results
show the demand for automated deployment coordination.

A first version of µs is implemented as a TypeScript library
using Pulumi as driver and Hareactive [40] for the reactive en-
gine [37] and presented in [36]. With it, a set of initial evaluations
was performed. First, the deployment of the TeaStore [41] was im-
plemented in µs , Pulumi, and AWS CDK. µs required 14% and
35% more lines of code. µs enables decentralized automated de-
ployment coordination with small definition overhead. Second, in a
microbenchmarkµs ’ deployment duration for a single microservice
was compared, showing similar performance to Pulumi and better
performance than AWS CDK. Third, the microservice was deployed
multiple times with a serial and a parallel chain of dependencies
between them.µs deploys the servicesÐas expectedÐin sequence
and parallel, each requiring roughly the same time measured in the
single-service experiment. Fourth, we transformed stack references
in 64 Pulumi projects from Github toµs offers and wishes. It is easy
to adoptµs’ automated deployment coordination in decentralized
Pulumi deployments using stack references.

6 CONTRIBUTION TO KNOWLEDGE

Research on IaC so far either focuses on modeling approaches like
TOSCA or CaC solutions like Ansible, Chef, or Puppet (cf. ğ2).
Recent IaC systems that support infrastructure provisioning and
leverage general-purpose programming languages, e.g., Pulumi and
AWS CDK, are not discussed in scientific research yet. µs is an
entrance into this direction, and we presume the discussion of var-
ious problems in this field. For instance, such IaC solutions start
dissolving the separation of infrastructure and application code,
which could be further blurred for, e.g., safe updating and dynamic
adaption. Also, we expect work on specializing debugging and test-
ing techniques of general-purpose languages for IaC, improving the
currently underdeveloped field of debugging and testing IaC [10].

The proposed decentralized mechanism to automate the deploy-
ment coordination is novel and enables further decoupling of cross-
functional teams, improving DevOps. It can be further contributed
back to modeling languages and implemented at the level of re-
source orchestrators, enabling decentralized federations suitable
to span across organizations, which is not the case for today’s
centralized orchestrator federation solutions.

7 CONCLUSION

DevOps aims for decoupled cross-functional teams, each indepen-
dently developing and operating their applications. However, appli-
cations depend on other teams’ applications, requiring decentralized,
asynchronous deployment coordination. We evaluate the practical
relevance of this problem and solve it by proposing the µs IaC
system, which automates decentralized deployment coordination.
We implement µs and describe its evaluation for effectiveness,
performance, and applicability to existing IaC scripts.
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